
8,10,12-TRIAZAPROSTAGLANDIN ANALOGUES

David R. Adams[†], Alan F. Barnes and Frederick Cassidy* Beecham Pharmaceuticals, Medicinal Research Centre, The Pinnacles, Harlow, Essex, England.

Abstract: A versatile synthetic procedure for the preparation of 8,10,12-triazaprostaglandin analogues is described.

We have previously indicated our interest in azaprostaglandins^{1,2} and have found that 12-aza-¹ and 10,12-diaza-³ prostaglandin analogues retain much of the biological activity shown by the natural prostaglandins⁴. In this preliminary communication we report a versatile synthetic procedure for the preparation of 8,10,12-triazaprostaglandin analogues (see Schemes 1 and 2).

4-Methyl-1,2,4-triazolidine-3,5-dione (1) was prepared according to Deucker and Zinner⁵. Oxidation of (1) to the triazoline dione (2) was accomplished with dinitrogen tetroxide⁶ and,without purification, (2) was subjected to an 'ene' reaction with hept-6-enoic acid⁷ in refluxing benzene. Esterification and subsequent purification⁸ gave the trans⁹ triazolidine dione (3) in 40% yield¹⁰ based on (1). [M.p. 55-7°. I.R.: v_{max} (melt), 1760, 1670-1740 cm⁻¹. NMR¹¹: τ (CDCl₃), 1.05-2.0 (brs, 1H, NH); 4.20 (sx, 1H, J = 15, 6, 6Hz, NCH₂CH=C<u>H</u>); 4.52 (sx, 1H, J = 15, 6, 6 Hz, NCH₂C<u>H</u>=CH); 5.95 (brd, 2H, NCH₂); 6.34 (s, 3H, CO₂CH₃); 6.95 ppm (s, 3H, NCH₃). C₁₁H₁₇N₃O₄ requires C, 51.76; H, 6.71; N, 16.46%; m/e (m*) 255.1219; found C, 51.55; H, 6.56; N, 16.59%; m/e (m*) 255.1243].

Michael addition of non-1-en-3-one¹² to the triazolidine dione (3) in refluxing dioxane in the presence of benzyltrimethyl ammonium hydroxide gave (4) which was subsequently reduced with sodium borohydride to give the triazolidine dione (5) as an oil in 76% yield after purification . [Mass spectrum: m/e (m*) requires 397.2591; found 397.2582]. Hydrolysis of (5) with aqueous sodium carbonate in methanol gave the required 8,10,12-triazaprostaglandin analogue (6) as a viscous oil. [I.R.: v_{max} (film), 2500-3600, 1640-1780 cm⁻¹. NMR: γ (CDCl₃), 3.9 (s, 2H, OH, CO₂H) overlapped with 4.4 (m, 2H, C<u>H</u>=C<u>H</u>, only J = 15 Hz visible); 5.8 (brt, 2H, NC<u>H</u>₂CH=CH); 6.0-6.7 (brm, 3H, NCH₂, C<u>H</u>OH); 6.9 (s, 3H, NCH₃); 9.1 ppm (brt, 3H, (CH₂)₅C<u>H</u>₃). C₁₉H₃₃N₃O₅ requires C, 59.51; H, 8.67; N, 10.96%: found C, 59.04; H, 8.71; N, 10.70%].

In an attempt to circumvent the known 15-dehydrogenase deactivation of prostaglandins⁴ a series of 15-methyl substituted compounds were also prepared (Scheme 2).

Scheme 2

Reagents: i; H2, 10% Pd/C, DME

ii; TsO C_6H_{13} , Na₂CO₃, NaI, HMPA, RT, 7 days HO CH_3

iii; 10% aq. Na₂CO₃ in CH₃OH, reflux, 18 hrs.

Hydrogenation of (3) afforded the saturated triazolidine dione (7) [M.p. 80-1°. Mass spectrum: m/e (m*) requires 257.1375; found 257.1377] which was alkylated with 1-(toluene-p-sulphonyloxy)-3-methylnonan-3-ol¹³ to give (8) as an oil after purification by chromatography . [I.R.: v_{max} (film), 3500, 1770, 1680-1740 cm⁻¹. NMR: γ (CDCl₃), 6.15-6.6 (brm, 4H, 2 x NCH₂); 6.35 (s, 3H, CO₂CH₃); 7.0 (s, 3H, NCH₃); 7.5-7.8 (m, 3H, CH₂CO₂CH₃, OH); 9.1 ppm (brt, 3H, (CH₂)₅CH₃). C₂₁H₃₉N₃O₅ requires C, 60.99; H, 9.51; N, 10.16%; m/e (m*) 413.2769: found C, 60.51; H, 9.72; N, 10.05%; m/e (m*) 413.2829]. Alkaline hydrolysis of (8) gave the required 8,10,12-triazaprostaglandin analogue (9) as a viscous oil which solidified on standing. [M.p. 52-4°. I.R.: v_{max} (Nujol), 2500-3500, 1770, 1680-1740 cm⁻¹. NMR: γ (DMSO), 6.2-6.7 (brm, 4H, 2 x NCH₂); 7.1 (s, 3H, NCH₃); 7.8 (brt, 2H, CH₂CO₂H); 9.1 ppm (brt, 3H, (CH₂)₅CH₃). C₂₀H₃₇N₃O₅ requires C, 60.13; H, 9.33; N, 10.52%; m/e (m*) 399.2734: found C, 59.61; H, 9.57; N, 10.38%; m/e (m*) 399.2688].

The unsaturated analogue of (8) can be prepared by alkylation of the triazolidine dione (3) with the tosylate (reagent ii) followed by purification on column chromatography.

The 8,10,12-triazaprostaglandin analogues were isolated as racemic mixtures and were screened as such for biological activity. The bronchodilation activity of these analogues will be reported elsewhere¹⁴.

References and Notes

- 1. Belgian Patent BE 835 989 (1976).
- 2. F. Cassidy and G. Wootton, Tetrahedron Letters, 1525 (1979).
- 3. West German Patent DT 2755771 (1978).
- See for example, Advances in Prostaglandin Research, Volumes 1 and 2, Ed.
 B. Samuelsson and R. Paoletti, Raven Press, 1976.
- 5. G. Zinner and W. Deucker, Arch. Pharm., 294, 370 (1961).
- 6. J.E. Herweh and R.M. Fantazier, Tetrahedron Letters, 2101 (1973).
- 7. E.A. Braude, R.P. Linstead and K.R.H. Wooldridge, J. Chem. Soc., 3074 (1956).
- 8. Purification was carried out by column chromatography using Merck Kieselgel 60 with chloroform and chloroform; ethanol as eluants.
- 9. The <u>trans</u> stereochemistry of compound (3) was verified by irradiation at τ 5.95 when the signal at τ 4.52 collapsed to a doublet of coupling constant J = 15 Hz, and by irradiation at τ 7.91 causing the signal at τ 4.20 to collapse to a doublet of coupling constant J = 15 Hz. G. Stork and G. Kraus, <u>J. Amer. Chem. Soc</u>., <u>98</u>, 6747 (1976) have previously reported a trans orientated product from a thermal 'ene' reaction.
- 10. Yields were not optimised.
- NMR Spectra were determined on a Perkin Elmer R12A (60 MHz) instrument except compound (3) where a Perkin Elmer R32 (90 MHz) was used. All samples contained T.M.S. as internal standard.
- 12. Prepared by vinyl magnesium bromide addition to heptaldehyde and subsequent oxidation.
- Prepared by Reformatsky reaction of ethyl bromoacetate with octan-2-one, reduction and subsequent tosylation.
- Preliminary data presented at the Fourth International Prostaglandin Conference (Washington, D.C., May 27, 1979).

The authors thank Mrs. D. Stoneham for her valuable technical assistance.

Present address: Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela.

(Received in UK 22 June 1979)